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1. INTRODUCTION

Natural frequency analysis is useful for the investigation of stability, bifurcation,
resonance and chaos in non-linear dynamic systems. The natural frequency of
a non-linear system depends on an initial state (or maximum displacement). This
initial state is maintained at equilibrium by an external force or it may be an
equilibrium position. When the external force is removed in an autonomous,
undamped, non-linear system, the system will oscillate with a "xed vibration
frequency. This frequency is termed the natural frequency for such an initial state or
a maximum displacement. For a given initial state, the traditional approach of
analysis is to linearize the non-linear equations of motion around the initial state or
equilibrium. The natural frequency and stability of such linearized systems are
investigated through an eigenvalue analysis.

A fundamental question arises in this linearization procedure: Does the
linearization provide an accurate picture of the vibration characteristics, especially
for non-trivial equilibria? The purpose of this note is to discuss the usefulness of the
linearization approach for examining the motion of non-linear systems around
a non-trivial initial state or equilibrium. In this note, a linearization analysis, an
approximate non-linear analysis and an exact analysis for non-linear systems are
presented and illustrated by means of a pendulum problem. The pendulum system
is chosen because it and its approximate model (Du$ng's equation) are
prototypical of the basic characteristics of many structural systems. The natural
frequencies and stability predicted by the three analyses are then compared.

2. PROBLEM FORMULATION

Consider a second order, non-linear, autonomous system,

xK#f (x)"0, (1)
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with an initial state (x*, 0). Use of x"x*#Dx and linearization of equation (1)
lead to

DxK#a
l
Dx"!f (x*), (2)

where a
l
"Lf (x)/Lx D(x*, 0) is constant. With f (x*) independent of time, the natural

frequency of equation (1) at (x*, 0) can be determined from the homogeneous part
of equation (2). Using a state-space formulation,

DxR "Dy, DyR "!a
l
Dx, (3)

and letting Dx"c exp(jt), characteristic equation of the linearized system is

j2#a
l
"0Nj

1,2
"$J!a

l
. (4)

For a
l
'0, the eigenvalues j

1,2
"$Ja

l
i where i"J!1. Hence, the natural

frequency u"Ja
l
, and the motion of the system (1) in the neighborhood of (x*, 0)

is stable [1]. However, for a
l
(0, j

1,2
"$JDa

l
D are real. Such a system is thus

unstable (saddle point) and no vibration frequency exists. The above procedure is
also applicable for the determination of the natural frequency and linear stability at
a non-trivial equilibrium x* given by

f (x*)"0. (5)

Linearization of equation (1) at the equilibrium results in

DxK#a
l
Dx"0. (6)

The natural frequency and stability of equations (2) and (6) are identical. Employing
a direct integration or an energy formulation [2], the period of oscillation (or
natural frequency) can be obtained for the non-linear system (1).

3. AN EXAMPLE

3.1. SOLUTION BY THE LINEARIZATION ANALYSIS

As a sample problem, consider a pendulum system given by

xK#a sinx"0, (7)

with an initial state (x*, 0), where a'0. To determine the natural frequency at the
point (x*, 0), linearization of equation (7) and eigenvalue analysis yield

u"Ja cosx*, 0)x*)
n
2

and
3n
2
)x*)2n (8)

for counter-clockwise motion. The eigenvalues j
1,2

"$JaDcosx* D for
n/2)x*)3n/2 are real. Such a system is unstable and no vibration
frequency exists. Similarly, the same results can be obtained for clockwise
motion.



Figure 1. A pendulum model.
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Now consider a pendulum of mass m and length l under a constant, restoring
moment M, as shown in Figure 1. The equation of motion of this system is

xK#
g
l
sin x!

M
ml2

"0, (9)

with equilibrium x*"sin~1(M/mgl). Letting g/l"a, the natural frequency and
linear stability at x* are given by the same results of equation (8) through the
linearization analysis.

3.2. SOLUTION BY AN APPROXIMATE, NON-LINEAR ANALYSIS

For Dx D)n, equation (7) is approximated by

xK#ax!
a
6
x3"0. (10)

For n)Dx D)2n, the variable x is replaced by 2n!Dx D. A direct integration of
equation (10) with (x*, 0) gives its natural frequency,

u"

nJah

4J3kK (k)
for 0)x*)J6, (11)

where

h"J6!J36!12x*2#x*4 and k"S6!J36!12x*2#x*4

6#J36!12x*2#x*4
, (12)
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and where K(k) is the elliptic integral of the "rst kind. For J6(x*(2n!J6, no
vibration frequency exists, implying that the approximate equation (10) is unstable
for such an interval of x*.

3.3. EXACT SOLUTION

Direct integration of equation (7) with (x*, 0) gives the natural frequency [2]

u"

nJa
2K (k)

, (13)

where k"J1!cosx*/J2.

4. RESULTS AND DISCUSSION

Natural frequency predicted by the three analyses are plotted in Figure 2. The
solid curve shows the exact natural frequency given by equation (13). The
approximate non-linear and linear results are denoted by the dash-dot and dash
curves. It is apparent that the three predictions give di!erent results for each x*
except at 0 and 2n, and that the linearization analysis gives a rather poor prediction
of the natural frequency and stability. The linearization analysis predicts that the
motion of equation (7) will be unstable for n/2)x*)3n/2, while the exact
Figure 2. Non-dimensional natural frequencies u*"u/Ja and stability characteristics of
equation (7) as predicted through the exact analysis (**), the approximate non-linear analysis (} )}),
and the linearization analysis (* *). x* is the initial displacement.
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solution indicates that the motion is stable only except at x*"n. Comparing with
the linearization analysis, the approximate non-linear analysis gives a much better
prediction of the natural frequency and stability. The relative error between
frequencies predicted by the approximate non-linear model and the exact solution
is 2.25% at x*"n/2, and the prediction of the unstable range of equation (7) is
improved, namely, the range changes from n/2)x*)3n/2 to J6)x*)
2n!J6. From the exact analysis, no periodical motion exists at x*"n. The
motion passing through x*"n is a homoclinic orbit. However, both the linear and
approximate non-linear analyses predict that the motion is unstable.

5. CONCLUSION

It is shown that the prediction of the natural frequency and stability of non-linear
systems can be signi"cantly improved by an approximate, non-linear model, and
that the usual linearization analysis can give misleading results for non-trivial
equilibria or initial states. Since the pendulum system is prototypical of the basic
vibration characteristics of many structural systems, it is expected that the
foregoing discussion can be extended to non-linear beam and plate problems. Thus,
it must be cautioned that, whenever possible, the complete or an approximate
non-linear model should be considered for accurate analysis of the natural
frequency and stability in non-linear dynamics.
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